Add like
Add dislike
Add to saved papers

Genome sequencing, purification, and biochemical characterization of a strongly fibrinolytic enzyme from Bacillus amyloliquefaciens Jxnuwx-1 isolated from Chinese traditional douchi.

A strongly fibrinolytic enzyme was purified from Bacillus amyloliquefaciens Jxnuwx-1, found in Chinese traditional fermented black soya bean (douchi). The molecular mass of the enzyme, estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), was 29 kDa. The optimal pH and temperature for the enzyme were 7.6 and 41°C, respectively. The enzyme was inhibited by phenylmethylsulfonyl fluoride, soybean trypsin inhibitor, ethylenediaminetetraacetic acid, Fe3+ , and Fe2+ . The highest affinity exhibited by the enzyme was towards N-Succinyl-Ala-Ala-Pro-Phe-pNA. These results indicated that it is a subtilisin-like serine metalloprotease. The enzyme degraded both fibrinogen and fibrin, displaying its highest degrading activity towards the Aα-chains followed by Bβ chains and Cγ chains. The enzyme was also activated by plasminogen, indicating its ability to degrade fibrinogen and fibrin in two ways: (a) by activating plasminogen conversion into plasmin, or (b) by direct hydrolysis. It degraded thrombin, suggesting that it may act as an anticoagulant to prevent thrombosis. Taken together, our results indicate the potential of this enzyme in controlling cardiovascular disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app