Add like
Add dislike
Add to saved papers

Vitamin D sterols increase FGF23 expression by stimulating osteoblast and osteocyte maturation in CKD bone.

Bone 2019 August 2
Impaired osteoblast and osteocyte maturation contribute to mineralization defects and excess FGF23 expression in CKD bone. Vitamin D sterols decrease osteoid accumulation and increase FGF23 expression; these agents also increase osteoblast maturation in vitro but a link between changes in bone cell maturation, bone mineralization, and FGF23 expression in response to vitamin D sterols has not been established. We evaluated unmineralized osteoid accumulation, osteocyte maturity markers (FGF23: early osteocytes; sclerostin: late osteocytes), and osteocyte apoptosis in iliac crest of 11 pediatric dialysis patients before and after 8 months of doxercalciferol therapy. We then evaluated the effect of 1,25(OH)2 vitamin D on in vitro maturation and mineralization of primary osteoblasts from dialysis patients. Unmineralized osteoid accumulation decreased while numbers of early (FGF23-expressing) increased in response to doxercalciferol. Osteocyte apoptosis was low but increased with doxercalciferol. Bone FGF23 expression correlated with numbers of early, FGF23-expressing, osteocytes (r = 0.83, p < 0.001). In vitro, 1,25(OH)2 vitamin D increased expression of the mature osteoblast marker osteocalcin (BGLAP) but only very high (100 nM) concentrations affected in vitro osteoblast mineralization. High doses (10 and 100 nM) of 1,25(OH)2 vitamin D also increased the ratio of RANKL/OPG expression in CKD osteoblasts. Vitamin D sterols directly stimulate osteoblast maturation. They also increase osteocyte turnover and increase osteoblast expression of osteoclast differentiation factors, thus likely modulating osteoblast/osteoclast/osteocyte coupling. By increasing numbers of early osteocytes, vitamin D sterols increase FGF23 expression in CKD bone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app