Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Umbelliprenin isolated from Ferula sinkiangensis inhibits tumor growth and migration through the disturbance of Wnt signaling pathway in gastric cancer.

The traditional herb medicine Ferula sinkiangensis K. M. Shen (F. sinkiangensis) has been used to treat stomach disorders in Xinjiang District for centuries. Umbelliprenin is the effective component isolated from F. sinkiangensis which is particularly found in plants of the family Ferula. We previously reported the promising effects of Umbelliprenin against gastric cancer cells, but its anti-migration effect remained unknown. Here we investigated the anti-migration effect and mechanism of Umbelliprenin in human gastric cancer cells. In SRB assay, Umbelliprenin showed cytotoxic activities in the gastric cancer cell lines AGS and BGC-823 in a dose-and-time-dependent manner, while it showed lower cytotoxic activity in the normal gastric epithelium cell line GES-1. During transwell, scratch and colony assays, the migration of tumor cells was inhibited by Umbelliprenin treatment. In gelatin zymography assay, Umbelliprenin could inhibit the expression of MMP2 and MMP9 in tumor cells The expression levels of the Wnt-associated signaling pathway proteins were analyzed with western blots, and the results showed that Umbelliprenin decreased the expression levels of proteins of the Wnt signalling pathway, such as Wnt-2, β-catenin, GSK-3β, p-GSK-3β, Survivin and c-myc. The translocation of β-catenin to the nucleus was also inhibited by Umbelliprenin treatment. In TCF reporter assay, the transcriptional activity of T-cell factor/lymphoid enhancer factor (TCF/LEF) was decreased after Umbelliprenin treatment. The in vivo results suggested that Umbelliprenin induced little to no harm in the lung, heart and kidney. Overall, these data provided evidence that Umbelliprenin may inhibit the growth, invasion and migration of gastric cancer cells by disturbing the Wnt signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app