Add like
Add dislike
Add to saved papers

Use of Twitter data to improve Zika virus surveillance in the United States during the 2016 epidemic.

BMC Public Health 2019 June 15
BACKGROUND: Zika virus (ZIKV) is an emerging mosquito-borne arbovirus that can produce serious public health consequences. In 2016, ZIKV caused an epidemic in many countries around the world, including the United States. ZIKV surveillance and vector control is essential to combating future epidemics. However, challenges relating to the timely publication of case reports significantly limit the effectiveness of current surveillance methods. In many countries with poor infrastructure, established systems for case reporting often do not exist. Previous studies investigating the H1N1 pandemic, general influenza and the recent Ebola outbreak have demonstrated that time- and geo-tagged Twitter data, which is immediately available, can be utilized to overcome these limitations.

METHODS: In this study, we employed a recently developed system called Cloudberry to filter a random sample of Twitter data to investigate the feasibility of using such data for ZIKV epidemic tracking on a national and state (Florida) level. Two auto-regressive models were calibrated using weekly ZIKV case counts and zika tweets in order to estimate weekly ZIKV cases 1 week in advance.

RESULTS: While models tended to over-predict at low case counts and under-predict at extreme high counts, a comparison of predicted versus observed weekly ZIKV case counts following model calibration demonstrated overall reasonable predictive accuracy, with an R2 of 0.74 for the Florida model and 0.70 for the U.S.

MODEL: Time-series analysis of predicted and observed ZIKV cases following internal cross-validation exhibited very similar patterns, demonstrating reasonable model performance. Spatially, the distribution of cumulative ZIKV case counts (local- & travel-related) and zika tweets across all 50 U.S. states showed a high correlation (r = 0.73) after adjusting for population.

CONCLUSIONS: This study demonstrates the value of utilizing Twitter data for the purposes of disease surveillance. This is of high value to epidemiologist and public health officials charged with protecting the public during future outbreaks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app