Add like
Add dislike
Add to saved papers

The Potential of Remedial Techniques for Hazard Reduction of Steel Process by Products: Impact on Steel Processing, Waste Management, the Environment and Risk to Human Health.

The negative impact from industrial pollution of the environment is still a global occurrence, and as a consequence legislation and subsequent regulation is becoming increasingly stringent in response, in particular, to minimising potential impact on human health. These changes have generated growing pressures for the steel industry to innovate to meet new regulations driving a change to the approach to waste management across the industrial landscape, with increasing focus on the principles of a circular economy. With a knowledge of the compositional profiles of process by-products, we have assessed chemical cleaning to improve environmental performance and minimise disruption to manufacturing processes, demonstrating re-use and recycling capacity. We show that with a knowledge of phase composition, we are able to apply stabilisation methods that can either utilise waste streams directly or allow manipulation, making them suitable for re-use and/or inert disposal. We studied blast furnace slags and Portland cement mixes (50%/50% and 30%/70%) with a variety of other plant wastes (electrostatic precipitator dusts (ESP), blast furnace (BF) sludge and basic oxygen furnace (BOF) sludge) which resulted in up to 90% immobilisation of hazardous constituents. The addition of organic additives i.e., citric acid can liberate or immobilise problematic constituents; in the case of K, both outcomes occurred depending on the waste type; ESP dust BF sludge and BOF fine sludge. Pb and Zn however were liberated with a 50-80% and 50-60% residue reduction respectively, which generates possibilities for alternative uses of materials to reduce environmental and human health impact.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app