Add like
Add dislike
Add to saved papers

Impact Strength and Dimensional Accuracy of Heat-Cure Denture Base Resin Reinforced With ZrO 2 Nanoparticles: An In Vitro Study.

Background: Polymerization shrinkage and fracture are the two common trouble shoots with denture base resins. Polymerization shrinkage affects the dimensional accuracy and fit of the prosthesis. The effect of zirconia (ZrO2 ) nanoparticles on polymerization shrinkage is not documented yet.

Purpose: The aim and objective of this study were to evaluate the impact strength and dimensional accuracy of heat-cured poly methyl methacrylate (PMMA) on reinforcement with ZrO2 nanoparticles.

Materials and Methods: Conventional heat-cure denture base resin (control) and the polymer reinforced with 3, 5, and 7 wt% of ZrO2 nanoparticles were prepared and used in this study. Forty bar-shaped specimens were prepared and tested for impact strength using Charpy's type impact tester. Forty denture bases were fabricated and checked for dimensional accuracy by measuring the distance between the denture base and the cast in two different sections using the travelling microscope.

Results: The impact strength decreased with increased concentration of ZrO2 and found to be least at 7 wt% concentration (2.01 ± 0.26 J/mm2 ). The distance between the denture base and the cast significantly decreased both in the posterior palatal seal region (0.060 ± 0.007 cm) and mid-palatine section region (0.057 ± 0.006 cm) with ZrO2 nanoparticles reinforcement and was found to be least at 7 wt% concentration.

Conclusion: Reinforcement of heat-cured PMMA with ZrO2 nanoparticles significantly increased the dimensional accuracy and decreased the impact strength.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app