Add like
Add dislike
Add to saved papers

TEMPO oxidized nano-cellulose containing thermo-responsive injectable hydrogel for post-surgical peritoneal tissue adhesion prevention.

The objective of this study was to present an effective injectable adhesion barrier comprised of TEMPO-oxidized cellulose nanofiber (TOCN), methyl cellulose, carboxymethyl cellulose, and polyethylene glycol. Hydrogels with different concentrations (0.2, 0.5, 0.8, 1% w/v) of bio compatible TOCN were investigated to determine their abilities to prevent post-surgical peritoneal adhesion using a rat cecal wall abrasion model. Sol-gel transition at body temperature (37 °C) was optimized by adjusting concentration of sodium ions (Na+ ), with a gelation time of 45 ± 7 s. These TOCN containing hydrogels showed non cytotoxicity to rat bone marrow mesenchymal stem cells (RBMSCs) and L929 fibroblast cells as cell models during in vitro assessment. Degradation studies revealed that, TOCN concentration in hydrogel was inversely proportional to hydrolytic degradation rate. From in vivo evaluations, TOCN 0.2 hydrogel significantly reduced peritoneal adhesion in rat (n = 8) compared to untreated controls based on gross observation, histological analysis, and expression analysis of marker proteins. By taking advantages of thermo gelling, high stability, non-invasive way of application and rapid recovery potential, TOCN containing bio compatible hydrogel could be used as a cost-effective barrier to efficiently inhibit post-surgical peritoneal adhesions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app