Add like
Add dislike
Add to saved papers

Histone deacetylase 6 is overexpressed and promotes tumor growth of colon cancer through regulation of the MAPK/ERK signal pathway.

Purpose: To investigate the expression of histone deacetylase 6 (HDAC6) in colon cancer and its role in colon cancer cell growth and migration. Materials and methods: We detected the expression of HDAC6 in a colon cancer tissue chip using immunochemical staining, and analyzed the difference in HDAC6 expression between cancer and adjacent noncancerous tissues. Then, we explored the relationship between HDAC6 expression and patients' clinicopathological characteristics and prognoses. In adidition, the role of HDAC6 in colon cancer cell growth and migration, as well as its potential related signal pathway, through HDAC6 knockdown was explored. Results: The immunochemical score of HDAC6 expression was higher in cancer tissue than in the adjacent noncancerous tissue (4.54 vs 3.08, P <0.005); similarly, as well as the rate of high HDAC6 expression was higher in cancer tissue than in the adjacent noncancerous tissue (71.1% vs 40.9%, P <0.001). Patients showing high HDAC6 expression had a shorter overall survival time. Additionally, Cox regression analysis showed that high HDAC6 expression was an independent risk factor for poor prognosis. HDAC6 knockdown decreased cell viability, colony formation, and number of migrated colon cancer cells (HCT116 and HT29); the expression of p-MEK, p-ERK, and p-AKT was also decreased, but had no influence on MEK, ERK, and AKT expression. Conclusion: HDAC6 is highly expressed in colon cancer and associated with a poor prognosis. HDAC6 knockdown inhibits colon cancer cell growth and migration, partly through the MAPK/ERK pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app