Add like
Add dislike
Add to saved papers

Microbiological synthesis of stereoisomeric 7(α/β)-hydroxytestololactones and 7(α/β)-hydroxytestolactones.

Microbiological synthesis of 7α- and 7β-hydroxy derivatives of testololactone and testolactone was developed based on bioconversion of dehydroepiandrosterone (DHEA) by fungus of Isaria fumosorosea VKM F-881 with subsequent modification of the obtained stereoisomers by actinobacteria. The first stage included obtaining of the stereoisomers of 3β,7(α/β)-dihydroxy-17a-oxa-D-homo-androst-5-en-17-ones in the preparative amounts. Then the conversion of 7-hydroxylated D-lactones obtained by selected actinobacteria of Nocardioides simplex VKM Ac-2033D, Saccharopolyspora hirsuta VKM Ac-666, and Streptomyces parvulus MTOC Ac-21v was studied. Under the transformation of 3β,7α-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one and its corresponding 7β-stereoisomer by N. simplex VKM Ac-2033D and S. hirsuta VKM Ac-666 the 7α- and 7β-hydroxy-17a-oxa-D-homo-androst-4-ene-3,17-dione (7α- and 7β-hydroxytestololactone), 7α- and 7β-hydroxy-17a-oxa-D-homo-androsta-1,4-diene-3,17-dione (7α- and 7β-hydroxytestolactone) were obtained with molar yields in a range of 60.3-90.9 mol%. The crystalline products of 7α-hydroxytestololactone, 7α-hydroxytestolactone, and their corresponding 7β-hydroxy stereoisomers were isolated, and their structures were confirmed by mass spectrometry and 1 H-NMR spectroscopy analyses. The strain of Str. parvulus MTOC Ac-21v transformed 3β,7(α/β)-dihydroxy-17a-oxa-D-homo-androst-5-en-17-ones into the corresponding 3-keto-4-ene analogs and did not show 3-ketosteroid 1(2)-dehydrogenase activity. The activity of actinobacteria towards steroid D-lactones was hitherto unreported.The results contribute to the knowledge of metabolic versatility of actinobacteria capable of transforming steroid substrates and may be applied in the synthesis of potential aromatase inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app