Add like
Add dislike
Add to saved papers

Interleukin-1β/nuclear factor-κB signaling promotes osteosarcoma cell growth through the microRNA-181b/phosphatase and tensin homolog axis.

So far, microRNA has attracted plenty of interest due to its role in tumorigenesis. Reportedly, miR-181b may be involved in the tumorigenesis of osteosarcoma (OS). In the current study, we attempted to investigate the detailed function and mechanism of miR-181b in OS carcinogenesis. Herein, miR-181a, miR-181b, miR-181c, and miR-181d expressions in OS tissues were higher than that in nontumor tissue samples as examined real-time polymerase chain reaction. Via direct targeting, miR-181b negatively regulated the expression of phosphatase and tensin homolog (PTEN), a well-known tumor suppressor. Furthermore, a small interfering RNA strategy was used to find that interleukin (IL)-1B and nuclear factor-κB (NF-κB) regulate miR-181b and PTEN expression. Consequently, the repression of PTEN by miR-181b promotes OS cell proliferation. In summary, our data support a critical role for NF-κB-dependent upregulation of miR-181b, which further inhibited PTEN expression and promoted the cell proliferation of OS cell lines. The above findings represent a new pathway for the repression of PTEN and the promotion of cell proliferation upon IL-1β induction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app