Add like
Add dislike
Add to saved papers

Cytochrome bcc-aa3 Oxidase Supercomplexes in the Aerobic Respiratory Chain of Streptomyces coelicolor A3(2).

Streptomyces coelicolor A3(2), an obligately aerobic, oxidase-positive, and filamentous soil bacterium, lacks a soluble cytochrome c in its respiratory chain, having instead a membrane-associated diheme c-type cytochrome, QcrC. This necessitates complex formation to allow electron transfer between the cytochrome bcc and aa3 oxidase respiratory complexes. Combining genetic complementation studies with in-gel cytochrome oxidase activity staining, we demonstrate that the complete qcrCAB-ctaCDFE gene locus on the chromosome, encoding, respectively, the bcc and aa3 complexes, is required to manifest a cytochrome oxidase enzyme activity in both spores and mycelium of a qcr-cta deletion mutant. Blue-native-PAGE identified a cytochrome aa3 oxidase complex of approximately 270 kDa, which catalyzed oxygen-dependent diaminobenzidine oxidation without the requirement for exogenously supplied cytochrome c, indicating association with QcrC. Furthermore, higher molecular mass complexes were identified upon addition of soluble cytochrome c, suggesting the supercomplex is unstable and readily dissociates into subcomplexes lacking QcrC. Immunological and mass spectrometric analyses of active, high-molecular mass oxidase-containing complexes separated by clear-native PAGE identified key subunits of both the bcc complex and the aa3 oxidase, supporting supercomplex formation. Our data also indicate that the cytochrome b QcrB of the bcc complex is less abundant in spores compared with mycelium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app