Add like
Add dislike
Add to saved papers

Cloning and functional analysis of the promoter of a stress-inducible gene (Zmap) in maize.

The anionic peroxidases play an important role in a variety of plant physiological processes. We characterized and isolated the Zmap promoter (PZmap) at the 5' flanking region in order to better understand the regulatory mechanisms of Zmap gene expression. A series of PZmap deletion derivatives, termed a1 -a6, at positions -1694, -1394, -1138, -784, -527 and -221 from the translation start site were blended to the β-glucuronidase reporter gene. Agrobacterium-mediated transformation method was used to study each deletion construct in tobaccos. Sequence analysis showed that several cis-acting elements (MYB binding site, Box-II, a TGACG-element, a CGTCA-element and a low temperature responsive element) were located within the promoter. Deletion analysis suggested the sequence between -1,694 and -1394bp may contain cis-elements associated with GUS up regulation. The MYB binding site (-757) might act as a negative drought-responsive element. There might be repressor elements located in the region (-1,694 to -1394bp) to repress Zmap expression under 4°C. The characterized promoter would be an ideal candidate for genetic engineering for improving the resistance of maize to different stressors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app