Add like
Add dislike
Add to saved papers

Structural and Functional Plasticity of Collagen Fibrils.

Collagen is a major component of the subendothelial matrix and participates in bleeding arrest by activating and aggregating platelets at the site of vascular injury. The most common type I collagen exists in both soluble and fibrillar forms, but structural exchangeability between the two forms is currently unknown. Using atomic force microscopy, we show that type I collagen switches between soluble and fibrillar forms in a pH-dependent and ion-independent manner. Fibrillar collagen is rope like with characteristic "D-bands." The collagen fibrils can be disrupted with 0.1 M acetic acid and will reform when the pH is adjusted to 7.4. This structural plasticity leads to drastically different activities, with fibrillar collagen being significantly more active for platelets under static and flow conditions. More important, by probing with noncontact hopping probe ion-conductance microscopy, we find that platelets adherent to fibrillar collagen present primarily as high-density bubble shapes that have undergone rapid microvesiculation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app