Add like
Add dislike
Add to saved papers

IL28RA inhibits human epidermal keratinocyte proliferation by inhibiting cell cycle progression.

Interleukin (IL) 28 receptor α (IL28RA) is a well-known candidate for psoriasis susceptibility based on previous genome-wide association study (GWAS) analysis. However, the function of IL28RA in psoriasis has not been elucidated. In the present study, the expression of IL28RA was significantly decreased in lesional tissues from patients with plaque psoriasis when compared with the expression observed in adjacent non-lesional tissues. In vitro studies further demonstrated that in the presence of IL-29, HaCaT keratinocytes with IL28RA knockdown exhibited a faster rate of proliferation than control cells, and an enhanced ratio of cells in the S and G2/M phase. By contrast, IL28RA overexpression inhibited the proliferation of HaCaT keratinocytes and caused cell cycle arrest at the G0/G1 phases. Western blot analysis revealed that knockdown of IL28RA upregulated cyclinB1 expression and downregulated cyclinE expression; the opposite results were observed in the IL28RA-overexpressing HaCaT cells. Finally, a mechanistic study revealed that IL28RA functions through the activation of the Janus kinase-signal transducer and activator of transcription signaling pathway to exert its anti-proliferative effect. These results suggested that weak expression of IL28RA may contribute to the pathogenesis of psoriasis and that IL28RA may be an effective drug target for the treatment of psoriasis. However, further in vivo studies are required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app