Journal Article
Observational Study
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

What are the biomechanical consequences of a structural leg length discrepancy on the adolescent spine during walking?

Gait & Posture 2019 Februrary
BACKGROUND: Structural leg length discrepancy (LLD) is a common phenomenon. However, its effect on spinal gait kinematics remains unclear.

RESEARCH QUESTION: How does LLD affect spinal gait kinematics in patients with structural LLD and what is the immediate effect of a shoe lift?.

METHODS: 10 adolescents with structural LLD (20-60 mm) and 14 healthy controls were included. All of whom were fitted with a trunk marker set and requested to walk barefoot as well as with an orthotic shoe lift (only patients). Data were collected using a 12-camera motion capture system. Group comparisons were conducted using one-dimensional Statistical Parametric Mapping (SPM).

RESULTS: Patients with LLD showed statistically significant increased frontal plane lumbar bending angles to the longer side (p = 0.007), increased pelvic drop on the shorter side (p < 0.001) and increased hip adduction angles on the longer leg (p < 0.001) compared to the healthy controls. In the sagittal plane, patients demonstrated changed knee (shorter leg) and ankle joint (longer leg) motion. All gait deviations observed in patients with LLD could immediately be altered by correcting the LLD using a shoe lift.

SIGNIFICANCE: Due to the LLD, patients showed a lateral pelvic drop on the shorter side, which appeared to be compensated for by a contralateral bending in the lumbar spine and a lateral shift of the pelvis towards the longer side. In addition, the use of an orthotic correction seems to be a suitable option to instantly normalize gait kinematics in patients with mild to moderate LLD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app