Add like
Add dislike
Add to saved papers

Photogeometric Cues to Perceived Surface Shading.

Current Biology : CB 2018 December 18
The human visual system is remarkably adept at extracting the three-dimensional (3D) shape of surfaces from images of smoothly shaded surfaces (shape from shading). Most research into this remarkable perceptual ability has focused on understanding how the visual system derives a specific representation of 3D shape when it is known (or assumed) that shading and self-occluding contours are the sole causes of image structure [1-11]. But there is an even more fundamental problem that must be solved before any such analysis can take place: how does the visual system determine when it's viewing a shaded surface? Here, we present theoretical analyses showing that there is statistically reliable information generated along the bounding contours of smoothly curved surfaces that the visual system uses to identify surface shading. This information can be captured by two photogeometric constraints that link the shape of bounding contours to the distributions of shading intensity along the contours: one that links shading intensity to the local orientations along bounding contours and a second that links shading intensity to bounding contour curvature. We show that these constraints predict the perception of shading for surfaces with smooth self-occluding contours and a widely studied class of bounding contours (planar cuts). The results provide new insights into the information that the visual system exploits to distinguish surface shading from other sources of image structure and offer a coherent explanation of the influence of bounding contours on the perception of surface shading and 3D shape.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app