Add like
Add dislike
Add to saved papers

A high current anodization to fabricate a nano-porous structure on the surface of Ti-based implants.

In this study, an oxide layer on Ti-based implants is fabricated by using a high current anodization (HCA) technique in the nitrate electrolyte. This layer is composed of micro-pits and nano-porous arrays in the honeycomb structure. The results show that both the roughness and the layer thickness are related to the reaction time, whereas the size of nano-pores has little to do with the anodization duration. Compared to the nano-tubular arrays constructed by the conventional anodization, this nano-porous layer shows significantly improved mechanical stability. Furthermore, the in vitro assay of osteoblasts shows that cells behaviors on this surface can be modulated by the topology of this special layer. A suitable hierarchical structure composed of micro-pits and nano-porous structure can significantly stimulate osteoblasts attachment, activity, spreading and ALP function. Therefore, this hierarchical surface layer may provide a promising approach, which endows the Ti-based implants with better stability and osseointegration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app