Add like
Add dislike
Add to saved papers

Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering.

Biomedical Materials 2018 December 18
Biological regeneration of articular cartilage continues to be a challenge at present. Functional engineered implants with patient-specific sizes are difficult to achieve. The aim of this study is to fabricate a biocompatible cell-laden hydrogel with a designable structure. Covalent hydrogels were prepared with water soluble hydroxybutyl chitosan (HBC) and oxidized chondroitin sulfate (OCS) via a Schiff-base reaction. With the aid of three-dimensional (3D) bioprinted sacrificial molds, hydroxybutyl chitosan/oxidized chondroitin sulfate (HBC/OCS) hydrogel with various structures were obtained. After the material constituent optimization process, an injectable hydrogel with a uniform porous structure of 100 μm average pore size was developed to form macroporous hydrogel. In vitro and in vivo biocompatibility of optimized HBC/OCS hydrogel were also carefully assessed. The results indicated that human adipose-derived mesenchymal stem cells could be 3D cultured in HBC/OCS hydrogel maintaining good viability. Moreover, the hydrogels were found to trigger the least amount of pro-inflammatory gene expression of macrophage and to inhibit acute immune responses in 7 days. These results demonstrate the potential of HBC/OCS hydrogels as a cell delivery system for cartilage tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app