Add like
Add dislike
Add to saved papers

Transcriptome analysis of differential gene expression in Dichomitus squalens during interspecific mycelial interactions and the potential link with laccase induction.

Interspecific mycelial interactions between white rot fungi are always accompanied by an increased production of laccase. In this study, the potential of the white rot fungus Dichomitus squalens to enhance laccase production during interactions with two other white rot fungi, Trametes versicolor or Pleurotus ostreatus, was assessed. To probe the mechanism of laccase induction and the role that laccase plays during combative interaction, we analyzed the differential gene expression profile of the laccase induction response to stressful conditions during fungal interaction. We further confirmed the expression patterns of 16 selected genes by qRT-PCR analysis. We noted that many differentially expressed genes (DEGs) encoded proteins that were involved in xenobiotic detoxification and reactive oxygen species (ROS) generation or reduction, including aldo/keto reductase, glutathione S-transferases, cytochrome P450 enzymes, alcohol oxidases and dehydrogenase, manganese peroxidase and laccase. Furthermore, many DEG-encoded proteins were involved in antagonistic mechanisms of nutrient acquisition and antifungal properties, including glycoside hydrolase, glucanase, chitinase and terpenoid synthases. DEG analyses effectively revealed that laccase induction was likely caused by protective responses to oxidative stress and nutrient competition during interspecific fungal interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app