Add like
Add dislike
Add to saved papers

Poly-allylamine hydrochloride and fucoidan-based self-assembled polyelectrolyte complex nanoparticles for cancer therapeutics.

Herein, we fabricated the novel drug delivery system based on the self-assembly of two polyelectrolytes, poly-allylamine hydrochloride (PAH) and fucoidan, as the polycation and polyanion, respectively, under mild conditions for cancer therapeutics. Furthermore, the designed polyelectrolyte complex nanoparticles as well as the methotrexate (MTX) disodium salt-loaded composites were systematically characterized using various techniques. The MTX loading in the nanoparticles was confirmed by zeta potential values that changed from -36.2 ± 2.2 to -28.3 ± 3.1 mV at a loading amount of 13.3 ± 1.2%. Furthermore, the obtained eventual particle sizes of nanoparticles were various with different concentrations and ratios of polyelectrolytes. The particle size also has increased from 130 ± 2.6 to 162.9 ± 2.3 nm after loading MTX. The drug release investigations in vitro at a pH value of 6.0 (acid environment) showed that the release of MTX was sustained in the conditions provided. Finally, we investigated the anticancer efficacy of MTX-loaded nanoparticles on MCF-7 cells and HeLa cells and the satisfactory results were obtained. Together, these self-assembled PAH/fucoidan nanoparticles with sustained drug release property will become the promising delivery system for cancer therapeutics. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app