Add like
Add dislike
Add to saved papers

The effect of ozone fumigation on the biogenic volatile organic compounds (BVOCs) emitted from Brassica napus above- and below-ground.

The emissions of BVOCs from oilseed rape (Brassica napus), both when the plant is exposed to clean air and when it is fumigated with ozone at environmentally-relevant mixing ratios (ca. 135 ppbv), were measured under controlled laboratory conditions. Emissions of BVOCs were recorded from combined leaf and root chambers using a recently developed Selective Reagent Ionisation-Time of Flight-Mass Spectrometer (SRI-ToF-MS) enabling BVOC detection with high time and mass resolution, together with the ability to identify certain molecular functionality. Emissions of BVOCs from below-ground were found to be dominated by sulfur compounds including methanethiol, dimethyl disulfide and dimethyl sulfide, and these emissions did not change following fumigation of the plant with ozone. Emissions from above-ground plant organs exposed to clean air were dominated by methanol, monoterpenes, 4-oxopentanal and methanethiol. Ozone fumigation of the plants caused a rapid decrease in monoterpene and sesquiterpene concentrations in the leaf chamber and increased concentrations of ca. 20 oxygenated species, almost doubling the total carbon lost by the plant leaves as volatiles. The drop in sesquiterpenes concentrations was attributed to ozonolysis occurring to a major extent on the leaf surface. The drop in monoterpene concentrations was attributed to gas phase reactions with OH radicals deriving from ozonolysis reactions. As plant-emitted terpenoids have been shown to play a role in plant-plant and plant-insect signalling, the rapid loss of these species in the air surrounding the plants during photochemical pollution episodes may have a significant impact on plant-plant and plant-insect communications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app