Add like
Add dislike
Add to saved papers

The acute pulmonary toxicity in mice induced by Staphylococcus aureus, particulate matter, and their combination.

Experimental Animals 2018 December 11
Inhalation of pathogenic bacteria transported by particulate matter (PM) presents an important potential threat to human health. Therefore, the pulmonary toxicity in mice caused by Staphylococcus aureus (S. aureus) and PM as individual matter and mixtures was studied. PM and S. aureus were instilled intratracheally into Kunming mice at doses of 0.2 mg/mouse and 5.08 × 106 CFU /mouse, respectively, as individual matter and in combination two times at 5-day intervals. After the exposure period, oxidative stress markers and nitric oxide (NO) in the lung, cellular infiltration, neurotrophins, chemokines, andcytokines in bronchoalveolar lavage fluid (BALF), and immunoglobulin (Ig) in sera were examined. Exposure to the combination of PM and S. aureus caused significant increases in malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and NO and significant decreases in total antioxidant capacity (T-AOC) and the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) in the lung. Meanwhile, the ratio of interleukin (IL)-4 to interferon (INF)-γ, the IL-4 level in BALF, and the IgE concentration in sera were significantly increased in the groups exposed to S. aureus or the combination of PM and S. aureus. Substance P and IL-8 in BALF were significantly increased in mice exposed to PM, S. aureus or their combination. In addition, PM, S. aureus, and their combination caused infiltration of leukocytes into the alveolar tissue spaces. The results suggested that exposure to the combination of PM and S. aureus induced a lung inflammatory response that was at least partly caused by oxidative stress and mediators from the activated eosinophils, neutrophils, alveolar macrophages, and epithelial cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app