Add like
Add dislike
Add to saved papers

Preparation of magnetic polyimide@ Mg-Fe layered double hydroxides core-shell composite for effective removal of various organic contaminants from aqueous solution.

Chemosphere 2018 December 4
In this work, a novel core-shell structured magnetic polyimide@layered double oxides (LDO) composites coating a porous polyimide (PI)-coated Fe3 O4 magnetic core and layered double hydroxide (LDH) has been successfully synthesized by solve-thermal synthesis and co-precipitation process. The magnetic PI@LDO composites were characterized by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), thermogravimetry analysis (TGA) and magnetic properties analysis. The composite materials displayed core-shell structure with flower-like morphology. The magnetic PI@LDO composites were applied to remove tetracycline (TC), 2,4-dichlorophenol (2,4-DCP) and glyphosate (GP) from aqueous solution. The action pH value was ranged from 5 to 9 for TC and GP and 3 to 7 for 2,4-DCP, respectively. Cl- showed a weak competitive adsorption effect to TC, 2, 4-DCP and GP. In addition, the presence of humic acid (HA) could slightly reduce the adsorption capacity of magnetic PI@LDO composites. The adsorption process could be well described by pseudo-second-order model for TC and GP, while pseudo-first-order model for 2,4-DCP. The experimental data of TC and 2,4-DCP could be fitted better with Freundlich model, while that of GP were fitted better with Langmuir model. The adsorptions of TC, 2,4-DCP and GP were both spontaneous and endothermic. The adsorption capacity decreased slightly after adsorption-desorption cycles repeated five times. This study demonstrated that magnetic PI@LDO exhibited great potential to be a mild and cost-effective adsorbent for the removal of various organic contaminants from wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app