Add like
Add dislike
Add to saved papers

Electrospun PCL, gold nanoparticles, and soy lecithin composite material for tissue engineering applications.

Soy lecithin has been shown to play a critical role in cell signaling and cellular membrane structure. In addition, it has been shown to increase biocompatibility, hydrophilicity, and decrease cytotoxicity. Gold nanoparticles have also shown to improve cellularity. Lecithin, gold nanoparticles, and polycaprolactone (PCL) solutions were electrospun in order to develop unique mesh materials for the treatment of osteoarthritis. The electrospinning parameters were optimized to achieve different solution ratios for fiber optimization. The amount of lecithin mixed with PCL varied from 30 wt.% to 50 wt.% . Gold nanoparticles (1% to 10% concentrations) were also added to lecithin-PCL mixture. The mechanical and chemical properties of the fiber mesh were analyzed via contact angle test, tensile mechanical tests, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Cell viability was measured using a WST-1 Assay. Scanning electron microscopy confirmed the successful formation of fiber mesh. The compositions of 40% soy lecithin with PCL in 40% solvent (40:40) resulted in the most well-formed fiber mesh. DSC melt temperatures were statically insignificant; uniaxial stresses and the moduli resulted in no significant difference between the test composition and pristine PCL compositions. WST-1 assay revealed all compositions were non-cytotoxic. Overall, the addition of lecithin increased hydrophilicity while maintaining cell viability and the mechanical and chemical properties of PCL. This study demonstrated that it is possible to successfully electrospin a lecithin, gold nanoparticle, and polycaprolactone scaffold for tissue engineering applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app