Add like
Add dislike
Add to saved papers

Overcoming the Undesirable CRISPR-Cas9 Expression in Gene Correction.

The CRISPR-Cas9 system is attractive for gene therapy, as it allows for permanent genetic correction. However, as a new technology, Cas9 gene editing in clinical applications faces major challenges, such as safe delivery and gene targeting efficiency. Cas9 is a foreign protein to recipient cells; thus, its expression may prompt the immune system to eliminate gene-edited cells. To overcome these challenges, we have engineered a novel delivery system based on the helper-dependent adenoviral (HD-Ad) vector, which is capable of delivering genes to airway basal stem cells in vivo. Using this system, we demonstrate the successful co-delivery of both CRISPR-Cas9/single-guide RNA and the LacZ reporter or CFTR gene as donor DNA to cultured cells. HD-Ad vector genome integrity is compromised following donor DNA integration, and because the CRISPR-Cas9/single-guide RNA and donor DNA are carried on the same vector, CRISPR-Cas9 expression is concurrently eliminated. Thus, we show the feasibility of site-specific gene targeting with limited Cas9 expression. In addition, we achieved stable CFTR expression and functional correction in cultured cells following successful gene integration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app