Add like
Add dislike
Add to saved papers

Preparation of immobilized lipase by modified polyacrylonitrile hollow membrane using nitrile-click chemistry.

Bioresource Technology 2018 November 23
The application of immobilized lipase in the enzymatic production of biodiesel has shown numerous advantages. In this study, surface of Polyacrylonitrile (PAN) hollow membrane was first modified using nitrile-click chemistry in order to fit for interaction with enzyme proteins. Then sodium alginate (SA) was introduced and the membrane was post-treated by CaCl2 . When the prepared PAN-PEI-SA-CaCl2 was used for lipase immobilization, the protein loading was 36.90 mg/g, and the enzyme activity reached up to 54.47 U/g, which was 2.5 times as much as that of Novozym® 435. As a result, the constructed immobilized lipase obtained a maximum biodiesel yield of 78.5%, which was 2.4 times that of the Novozym® 435 in transesterification reactions. Moreover, the biodiesel yield decreased by only 11% after the immobilized enzyme was continuously used for 20 times. This study exhibits that this technic has broad application prospects in the field of conversion of biomass resources.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app