Add like
Add dislike
Add to saved papers

Age at onset of walking in infancy is associated with hip shape in early old age.

Bones' shapes and structures adapt to the muscle and reaction forces they experience during everyday movements. Onset of independent walking, at approximately 12 months, represents the first postnatal exposure of the lower limbs to the large forces associated with bipedal movements, and, accordingly, earlier walking is associated with greater bone strength. However, associations between early life loading and joint shape have not been explored. We therefore examined associations between walking age and hip shape at age 60-64y in 1423 individuals (740 women) from the MRC National Survey of Health and Development, a nationally-representative British birth cohort. Walking age in months was obtained from maternal interview at age 2y. Ten modes of variation in hip shape (HM1-HM10), described by statistical shape models, were ascertained from dual-energy X-ray absorptiometry (DXA) images. In sex-adjusted analyses, earlier walking age was associated with higher HM1 and HM7 scores; these associations were maintained after further adjustment for height, body composition and socioeconomic position. Earlier walking was also associated with lower HM2 scores in women only, and lower HM4 scores in men only. Taken together, this suggests that earlier walkers have proportionately larger (HM4) and flatter (HM1,4) femoral heads, wider (HM1,4,7) and flatter (HM1, 7) femoral necks, smaller neck-shaft angle (HM1,4), anteversion (HM2,7) and development of osteophytes (HM1). These results suggest that age at onset of walking in infancy is associated with variations in hip shape in older age. Early walkers have a larger femoral head and neck and smaller neck-shaft angle; these features are associated with reduced hip fracture risk, but also represent an osteoarthritic-like phenotype. Unlike results of previous studies of walking age and bone mass, associations in this study were not affected by adjustment for lean mass suggesting that associations may relate directly to skeletal loading in early life when joint shape changes rapidly. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app