Add like
Add dislike
Add to saved papers

A new ionic liquid surface imprinted polymer for selective solid phase extraction and determination of sulfonamides in environmental samples.

Toward improving the selective adsorption performance of molecularly imprinted polymers in strong polar solvents, in this work, a new ionic liquid functional monomer, 1-butyl-3-vinylimidazolium bromide, was used to synthesize sulfamethoxazole imprinted polymer in methanol. The resulting molecularly imprinted polymer was characterized by Fourier transform infrared spectra and scanning electron microscopy, and the rebinding mechanism of the molecularly imprinted polymer for sulfonamides was studied. A static equilibrium experiment revealed that the as-obtained molecularly imprinted polymer had higher molecular recognition for sulfonamides (e. g., sulfamethoxazole, sulfamonomethoxine, and sulfadiazine) in methanol; however, its adsorption of interferent (e. g., diphenylamine, metronidazole, 2,4-dichlorophenol, and m-dihydroxybenzene) was quite low. 1 H Nuclear Magnetic Resonance spectroscopic analysis indicated that the excellent recognition performance of the imprinted polymer was based primarily on hydrogen bond, electrostatic and π-π interactions. Furthermore, the molecularly imprinted polymer can be employed as a solid phase extraction sorbent to effectively extract sulfamethoxazole from a mixed solution. Combined with high performance liquid chromatography analysis, a valid molecularly imprinted polymer-solid phase extraction protocol was established for extraction and detection of trace sulfamethoxazole in spiked soil and sediment samples, and with a recovery that ranged from 93-107%, and a relative standard deviation of lower than 9.7%. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app