Add like
Add dislike
Add to saved papers

Factors affecting the sorption of halogenated phenols onto polymer/biomass-derived biochar: Effects of pH, hydrophobicity, and deprotonation.

High-performance biochar synthesized via co-pyrolysis of a polymer and rice straw (RS) was evaluated as a sorbent for ionizable halogenated phenols. Compared with RS-derived biochar, the sorption of 2,4-dichlorophenol (DCP), 2,4-dibromophenol (DBP), and 2,4-difluorophenol (DFP) onto polymer/RS-derived biochar was significantly enhanced by the properties of biochar changing due to polymer residues. According to Langmuir sorption isotherm model maximum sorption capacities for DCP, DBP, and DFP were 25.5-27.8, 22.1-26.5, and 11.5-13.3 mg/g, respectively, 3-5 times higher than those of RS-derived biochar. The removal of the polymer residues and increasing aromaticity of polymer/RS-derived biochar at elevated pyrolysis temperatures affected the sorption capacity of halogenated phenols. The surface charge of biochar and deprotonation of the halogenated phenols according to the solution pH were other factors responsible for sorption onto polymer/RS-derived biochar. Competition with other halogenated phenols, Zn2+ , and Cu2+ implied that similar sorption mechanisms existed and that surface complexation and electron donor-acceptor interactions were involved in sorption onto polymer/RS-derived biochar. Our results suggest that co-disposal of thermoplastic and biomass wastes through pyrolysis may be an effective option to produce high-performance upgraded biochar as a sorbent for various types of contaminants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app