Add like
Add dislike
Add to saved papers

Genome-wide transcriptional response of microRNAs to the benzo(a)pyrene stress in amphioxus Branchiostoma belcheri.

Chemosphere 2018 November 21
Amphioxus, a cephalochordate found in sand habitats in shallow in-shore seawaters, has been widely used as a model in comparative immunology of chordates. However, the role of microRNAs (miRNAs) in amphioxus under abiotic stress, particularly xenobiotics with strong toxicity, remains largely unknown. Here, a widespread marine contaminant, benzo(a)pyrene (BaP) is used to evaluate its toxic effects on miRNA expression of amphioxus. Six small RNA libraries were sequenced from Branchiostoma belcheri. A total of 144 known and 157 novel miRNAs were identified using deep sequencing and bioinformatics approaches. A total of 58 differentially expressed miRNAs (DEMs) were screened, including 25 up- and 33 down-regulated DEMs under BaP stress. Target genes possibly regulated by DEMs were predicted, and their functional enrichment analyses were performed. Targets of DEMs are primarily involved in xenobiotic and cellular homeostasis, catabolic and transport process. They could be largely linked to nine immune- and toxin detoxification-related pathways, including metabolism of xenobiotics by cytochrome P450, drug metabolism-other enzymes, and drug metabolism-cytochrome P450, etc. Furthermore, quantitative real-time PCR (qRT-PCR) analysis for 12 key BaP-responsive DEMs validates the accuracy of deep sequencing. Experiments were then conducted to investigate their expression responses to BaP stress at different time intervals in detail to further determine their expression dynamic in responses of B. belcheri towards BaP exposure. This study, to the best of our knowledge, investigates the regulatory roles of miRNAs in the toxicological response of amphioxus for the first time, providing valuable information for the protection of lone existing cephalochordate amphioxus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app