Add like
Add dislike
Add to saved papers

Evaluation of changes in Microcystis aeruginosa growth and microcystin production by urea via transcriptomic surveys.

The freshwater cyanobacteria, Microcystis aeruginosa (M. aeruginosa), is well known to produce microcystins (MCs) and induce the formation of harmful algal blooms (HABs) in aquatic environments, but the effects that urea fertilizer has on cyanobacterial growth and toxin production from a molecular biology perspective remain poorly understood. We evaluated changes in the growth and toxicity of M. aeruginosa cultured under different conditions of nitrogen (N) starvation (NN), low nitrogen (LN), and high nitrogen (HN). Cell density and chlorophyll-a concentrations decreased in cyanobacteria exposed to N starvation and increased following the addition of urea, whereas MCs content increased to a peak and then decreased after urea addition. Transcriptomic analysis confirmed that most genes encoding MCs and genes involved in N metabolic pathways were upregulated under N starvation and LN conditions, whereas these genes were downregulated under HN conditions. Our results offer important insights into the exploring N in controlling the formation of HABs and toxin production based on both physiological and molecular response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app