Add like
Add dislike
Add to saved papers

Preparation of Assembled Carbon Soot Films and Hydrophobic Properties.

Materials 2018 November 20
In this paper, a simple, inexpensive, and rapid method for the fabrication of controlled layer candle soot film has been reported by interface self-assembly and transferred method. The mechanism of candle soot self-assembly is explained and their morphology, elemental composition, optical, and wetting properties are characterized. The uniformity and thickness of prepared films especially depend on the concentration of candle soot mixed solution (alcohol and deionized water). The results show that the optimal concentration of candle soot solution is approximately ~0.2% wt/mL. In addition, the absorption spectra of the controlled-layer candle soot films are determined by the number of layers and the surface morphology. The hydrophobic properties of candle soot films are closely related to their layer number. When these films reach to the fourth layer, the water contact angle and roll-off angle are measured as 142° ± 2° and 6°, respectively. The controlled assembly CS films have the potential application in photo/electrocatalysis, solar cells, lithium-ion batteries, and water splitting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app