Journal Article
Review
Add like
Add dislike
Add to saved papers

Sonochemical and sonoelectrochemical production of hydrogen.

Ultrasonics Sonochemistry 2018 September 23
Reserves of fossil fuels such as coal, oil and natural gas on earth are finite. The continuous use and burning of these fossil fuel resources in the industrial, domestic and transport sectors has resulted in the extremely high emission of greenhouse gases, GHGs (e.g. CO2 ) and solid particulates into the atmosphere. Therefore, it is necessary to explore pollution free and more efficient energy sources in order to replace depleting fossil fuels. The use of hydrogen (H2 ) as an alternative fuel source is particularly attractive due to its very high specific energy compared to other conventional fuels and its zero GHG emission when used in a fuel cell. Hydrogen can be produced through various process technologies such as thermal, electrolytic, photolytic and biological processes. Thermal processes include gas reforming, renewable liquid and biooil processing, biomass and coal gasification; however, these processes release a huge amount of greenhouse gases. Production of electrolytic hydrogen from water is an attractive method to produce clean hydrogen. It could even be a more promising technology when combining water electrolysis with power ultrasound to produce hydrogen efficiently where sonication enhances the electrolytic process in several ways such as enhanced mass transfer, removal of hydrogen and oxygen (O2 ) gas bubbles and activation of the electrode surface. In this review, production of hydrogen through sonochemical and sonoelectrochemical methods along with a brief description of current hydrogen production methods and power ultrasound are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app