Add like
Add dislike
Add to saved papers

Aquatic ecotoxicity of an antidepressant, sertraline hydrochloride, on microbial communities.

Sertraline hydrochloride (Ser-HCl), a widely used antidepressant, becomes an aquatic contaminant via metabolic excretion and improper disposal; however, it is unknown how Ser-HCl affects aquatic microbial communities. The present study investigated the effects of Ser on the structures of aquatic microbial communities via high-throughput sequencing analyses. Ser-HCl treatment inhibited the growth of two model algae (the green alga, Chlorella vulgaris, and the cyanobacterium, Microcystis aeruginosa) and decreased the chlorophyll a (Chl-a) concentration in the microcosm to reduce the photosynthetic efficiency. High-throughput sequencing analyses showed that exposure to Ser-HCl disturbed the balance of cyanobacteria species by stimulating the growth of specific cyanobacteria. Among eukaryotes, the richness as well as the diversity indices were significantly enhanced after 5 days of Ser-HCl treatment but sharply decreased with exposure time. Nucleariida occupied an absolute majority (97.83%) within the eukaryotes, implicating that Ser-HCl disturbed the ecological equilibrium in microcosms. Ser-HCl will continue to be an environmental contaminant due to its wide usage and production. Our current study clarified the potential ecological risk of Ser-HCl to aquatic microorganisms. These findings suggest that more attention should be given to the negative effects of these bioactive pollutants on aquatic environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app