Add like
Add dislike
Add to saved papers

Fabrication and Characterization of Core-Shell Nanofibers Using a Next-Generation Airbrush for Biomedical Applications.

The core-shell polymeric nanofiber, owing to its better controlled release of embedded or encapsulated drugs in contrast with the single-compartment nanofibers, has been extensively studied for biomedical applications such as tissue engineering and wound healing. Electrospinning with co-axial needles is the dominant technique to fabricate nanofiber mat, however, associated with potential limitations such as high voltage requirement, costly equipment, slow deposition rate, required trained personal, not suitable in situ fabrication, and direct deposition of core-shell nanofibers on the wound at patient bedside. To address the above limitations, the work aims to introduce a novel co-axial airbrushing method to fabricate core-shell nanofibers using a simple setup and low-cost equipment, yet having a unique ability for fabrication at patient bedside and direct deposition on wound bed. Air-brush with a coaxial needle is designed to flow two different polymers solution with model biomolecules through core [PEO (polyethylene oxide)/poly-dl-lactide/PCL (polycaprolactone)] and shell (PCL/PEO) needle for the fabrication of the model core-shell nanofiber. Various processing parameters such as flow rate, air pressure, working distance, and concentration of polymer solution which affect the morphology of core-shell nanofibers were studied and found to have a prominent effect. The PCL-PEO nanofiber possesses a defined shell and core structure, tunable sustained release behavior of model proteins (bovine serum albumin and basic fibroblast growth factor; bFGF), and improved mechanical strength. In vitro interaction of human bone marrow-derived mesenchymal stem cells with core-shell fibers demonstrated the cytocompatibility and proliferative and differentiative (for bFGF loaded) properties of the core-shell nanofiber mat. Co-axial airbrushing can be used as a superior less-expensive technique for the fabrication of biomolecules/drug encapsulated core-shell fibers scaffold at patient bedside, which can mimic complex in vivo environment and could modulate cells behavior close to their in vivo condition for tissue regeneration and wound healing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app