Add like
Add dislike
Add to saved papers

Suppression, Disaggregation, and Modulation of γ-Synuclein Fibrillation Pathway by Green Tea Polyphenol EGCG.

Protein Science 2018 November 6
Oligomerization of γ-Synuclein is known to have implications for both neurodegeneration and cancer. Although it is known to co-exist with the fibrillar deposits of α-Synuclein (Lewy bodies), a hallmark in Parkinson's disease (PD), the effect of potential therapeutic modulators on the fibrillation pathway of γ-Syn remains unexplored. By a combined use of various biophysical tools and cytotoxicity assays we demonstrate that the flavonoid epigallocatechin-3-gallate (EGCG) significantly suppresses γ-Syn fibrillation by affecting its nucleation and binds with the unstructured, nucleus forming oligomers of γ-Syn to modulate the pathway to form α-helical containing higher-order oligomers (~158 kDa and ~ 670 kDa) that are SDS-resistant and conformationally restrained in nature. Seeding studies reveal that these oligomers although 'on-pathway' in nature, are kinetically retarded and rate-limiting species that slows down fibril elongation. We observe that EGCG also disaggregates the protofibrils and mature γ-Syn fibrils into similar SDS-resistant oligomers. Steady-state and time-resolved fluorescence spectroscopy and isothermal titration calorimetry (ITC) reveal a weak non-covalent interaction between EGCG and γ-Syn with the dissociation constant in the mM range (Kd ~ 2-10 mM). Interestingly, while EGCG-generated oligomers completely rescue the breast cancer (MCF-7) cells from γ-Syn toxicity, it reduces the viability of neuroblastoma (SH-SY5Y) cells. However, the disaggregated oligomers of γ-Syn are more toxic than the disaggregated fibrils for MCF-7cells. These findings throw light on EGCG-mediated modulation of γ-Syn fibrillation and suggest that investigation on the effects of such modulators on γ-Syn fibrillation is critical in identifying effective therapeutic strategies using small molecule modulators of synucleopathies. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app