Add like
Add dislike
Add to saved papers

Dual-photosensitizer coupled nanoscintillator capable of producing type I and type II ROS for next generation photodynamic therapy.

The current photodynamic therapy (PDT) is majorly hindered by the shallow penetration depth and oxygen dependency, limiting its application to deep-seated solid hypoxic tumors. Thus, it is meaningful to develop efficient X-ray mediated PDT system capable of generating reactive oxygen species (ROS) under both the normoxic and hypoxic conditions. Herein, we report the synthesis and characterization of nanocomposite, YAG:Pr@ZnO@PpIX with an amalgamation of UV-emitting Y2.99 Pr0.01 Al5 O12 (YAG:Pr) nanoscintillator, and zinc oxide (ZnO) and protoporphyrin IX (PpIX) as photosensitizers. YAG:Pr surface was coated with a ZnO layer (∼10 nm) by atomic layer deposition, and then PpIX was covalently conjugated via a linker to give YAG:Pr@ZnO@PpIX. The photo- and cathodoluminescence analyses gave the evidences of efficient energy transfer from YAG:Pr to ZnO at ∼320 nm, and YAG:Pr@ZnO to PpIX at Soret region (350-450 nm). The nanohybrid was able to produce both, Type I and Type II ROS upon direct and indirect photoactivation with UV365nm and UV290nm , respectively. In vitro cytotoxicity of non-activated YAG:Pr@ZnO@PpIX in mouse melanoma cells revealed low toxicity, which significantly enhanced upon photoactivation with UV365nm indicating the photokilling property of the nanohybrid. Overall, our preliminary studies successfully demonstrate the potential of YAG:Pr@ZnO@PpIX to overcome the limited penetration and oxygen-dependency of traditional PDT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app