Add like
Add dislike
Add to saved papers

Beyond the model: expert knowledge improves predictions of species' fates under climate change.

Ecological Applications 2018 November 4
The need to proactively manage landscapes and species to aid their adaptation to climate change is widely acknowledged. Current approaches to prioritizing investment in species conservation generally rely on correlative models, which predict the likely fate of species under different climate change scenarios. Yet, while model statistics can be improved by refining modelling techniques, gaps remain in understanding the relationship between model performance and ecological reality. To investigate this we compared standard correlative species distribution models to highly accurate, fine-scale distribution models. We critically assessed the ecological realism of each species' model, using expert knowledge of the geography and habitat in the study area and the biology of the study species. Using interactive software and an iterative vetting with experts, we identified seven general principles that explain why the distribution modelling under- or over-estimated habitat suitability, under both current and predicted future climates. Importantly, we found that, while temperature estimates can be dramatically improved through better climate downscaling, many models still inaccurately reflected moisture availability. Furthermore, the correlative models did not account for biotic factors such as disease or competitor species, and were unable to account for the likely presence of micro refugia. Under-performing current models resulted in widely divergent future projections of species' distributions. Expert vetting identified regions that were likely to contain micro refugia, even where the fine-scale future projections of species distributions predicted population losses. Based on the results we identify four priority conservation actions required for more effective climate change adaptation responses. This approach to improving the ecological realism of correlative models to understand climate change impacts on species can be applied broadly to improve the evidence base underpinning management responses. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app