Add like
Add dislike
Add to saved papers

Model Order Reduction Based on Agglomerative Hierarchical Clustering.

This paper presents an improved method for reducing high-order dynamical system models via clustering. Agglomerative hierarchical clustering based on performance evaluation (HC-PE) is introduced for model order reduction. This method computes the reduced order denominator of the transfer function model by clustering system poles in a hierarchical dendrogram. The base layer represents an nth order system, which is used to calculate each successive layer to reduce the model order until finally reaching a second-order system. HC-PE uses a mean-squared error (MSE) in every reduced order, which modifies the pole placement process. The coefficients for the numerator of the reduced model are calculated by using the Padé approximation (PA) or alternatively a genetic algorithm (GA). Several numerical examples of reducing techniques are taken from the literature to compare with HC-PE. Two classes of results are shown in this paper. The first sets are single-input single-output models that range from simple models to 48th order systems. The second sets of experiments are with a multi-input multioutput model. We demonstrate the best performance for HC-PE through minimum MSEs compared with other methods. Furthermore, the robustness of HC-PE combined with PA or GA is confirmed by evaluating the third-order reduced model for the triple-link inverted pendulum model by adding a disturbance impulse signal and by changing model parameters. The relevant stability proofs are provided in Appendixes A and B in the supplementary material. HC-PE with PA slightly outperforms its performance with GA, but both approaches are attractive alternatives to other published methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app