Add like
Add dislike
Add to saved papers

Biomimetic extracellular matrix coatings improve the chronic biocompatibility of microfabricated subdural microelectrode arrays.

Intracranial electrodes are a vital component of implantable neurodevices, both for acute diagnostics and chronic treatment with open and closed-loop neuromodulation. Their performance is hampered by acute implantation trauma and chronic inflammation in response to implanted materials and mechanical mismatch between stiff synthetic electrodes and pulsating, natural soft host neural tissue. Flexible electronics based on thin polymer films patterned with microscale conductive features can help alleviate the mechanically induced trauma; however, this strategy alone does not mitigate inflammation at the device-tissue interface. In this study, we propose a biomimetic approach that integrates microscale extracellular matrix (ECM) coatings on microfabricated flexible subdural microelectrodes. Taking advantage of a high-throughput process employing micro-transfer molding and excimer laser micromachining, we fabricate multi-channel subdural microelectrodes primarily composed of ECM protein material and demonstrate that the electrochemical and mechanical properties match those of standard, uncoated controls. In vivo ECoG recordings in rodent brain confirm that the ECM microelectrode coatings and the protein interface do not alter signal fidelity. Astrogliotic, foreign body reaction to ECM coated devices is reduced, compared to uncoated controls, at 7 and 30 days, after subdural implantation in rat somatosensory cortex. We propose microfabricated, flexible, biomimetic electrodes as a new strategy to reduce inflammation at the device-tissue interface and improve the long-term stability of implantable subdural electrodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app