Add like
Add dislike
Add to saved papers

Identification and mapping of two independent recessive loci for the root hairless mutant phenotype in soybean.

KEY MESSAGE: Two functional complementation QTLs were identified for root hairless formation in soybean. Root hairs play critical roles not only in nutrient/water uptake from soils, but also in plant-microorganism interactions. However, genetic information about root hair development remains fragmented. We previously identified a soybean natural mutant (RBC-HL) with the root hairless (HL) phenotype. In order to reveal the genetic basis for this phenotype, a polymorphic population was constructed using RBC-HL and a genotype (RBC-NH) with normal root hairs (NH). Three representative phenotypes of root hair formation were observed in the progeny, including NH, medium (MH) and HL. All F1 plants were of the NH type, and the respective segregation ratios in F2 , F2:3 and RIL (F5:7 ) plants fit the theoretical ratio of 15:1, 7:8:1 and 3:1, indicating that the HL mutation is controlled by two independent recessive loci. In order to map HL-associated loci, a high-density genetic map was constructed using 8784 bin markers covering a total genetic distance of 3108.2 cM, and an average distance between adjacent markers of 0.4 cM. Two major QTLs, qRHLa and qRHLb, were identified and mapped on chromosome 01 and 11, and further delimited to interval regions of ~ 289 kb and ~ 1120 kb, respectively. Phylogenetic analysis suggested that the two candidate regions originated from soybean duplication events, where seven pairs of homologous genes shared 86-97% sequence identify. In conclusion, we partially uncovered the genetic mechanism underlying root hair formation in soybean. Namely, two independent recessive loci, qRHLa and qRHLb, containing several candidate genes were predicted to control the root hairless mutant RBC-HL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app