Add like
Add dislike
Add to saved papers

Cyclomatrix Polyphosphazene Porous Networks with J-Aggregated Multiphthalocyanine Arrays for Dual-Modality Near-Infrared Photosensitizers.

Here, we have developed a kind of cyclomatrix polyphosphazene with excellent photophysical properties and pursued their potential of being organic photosensitizers for dual-modality phototherapy. Briefly, hexachlorocyclophosphazene (HCCP) with D3 h symmetry is adopted as a synthon to attach Zn(II) phthalocyanine (ZnPc) to form dendritic units that are covalently expanded into a soluble porous network through the nucleophilic substitution reaction. Molecular simulation reveals that the multi-ZnPc units around HCCP can be oriented in a side-by-side manner, leading to the remarkably red-shifted and intense absorbance in the near-infrared (NIR) region. To validate the potential in bioapplication, such ZnPc-based polyphosphazenes are assembled by incorporation of polyvinylpyrrolidone (PVP) to produce the uniform nanoparticles with aqueous dispersibility and biocompatibility. From the in vitro results, the PVP-stabilized photosensitizing nanoparticles can undergo the photothermal/photodynamic processes to concurrently generate heat and singlet oxygen for efficiently killing cancer cells upon exposure to a single-bandwidth NIR laser (785 nm). Compared with the known organic photosensitizers, cyclomatrix polyphosphazene would be a promising platform to configure a diversity of reticular arrays with dense and oriented arrangement of dye molecules, leading to their largely enhanced photophysical and photochemical properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app