Add like
Add dislike
Add to saved papers

Theophylline inhibits cigarette smoke-induced inflammation in skeletal muscle by upregulating HDAC2 expression and decreasing NF-κB activation.

Inflammation is associated with skeletal muscle dysfunction and atrophy in patients with chronic obstructive pulmonary disease (COPD). Theophylline has an anti-inflammatory role in COPD. However, the effects of theophylline on inflammation in skeletal muscle in COPD have rarely been reported. The aims of this study were to explore whether theophylline has an anti-inflammatory effect on skeletal muscle in a mouse model of emphysema and to investigate the molecular mechanism underlying this effect. In mice, cigarette smoke (CS) exposure for 28 weeks resulted in atrophy of the gastrocnemius muscle. Histone deacetylase 2 (HDAC2) and nuclear factor-κBp65 (NF-κBp65) mRNA and protein levels were significantly decreased and increased, respectively, in gastrocnemius muscle. This effect was revered by aminophylline. The exposure of murine skeletal muscle C2C12 cells to cigarette smoke extract (CSE) significantly increased IL-8 and TNF-α levels as well as NF-κBp65 mRNA and protein levels and NF-κBp65 activity. This effect was reversed by theophylline. HDAC2 knockdown enhanced the activity of NF-κBp65 and increased IL-8 and TNF-α levels in C2C12 cells. CSE significantly inhibited the interaction of HDAC2 with NF-κBp65 in C2C12 cells. These data suggest that theophylline has an anti-inflammatory effect on skeletal muscle in a mouse model of emphysema by upregulating HDAC2 expression and decreasing NF-κBp65 activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app