Add like
Add dislike
Add to saved papers

Volatile Acid-Solvent Evaporation (VASE): Molecularly Homogeneous Distribution of Acyclovir in a Bioerodable Polymer Matrix for Long-Term Treatment of Herpes Simplex Virus-1 Infections.

Treatment for herpes simplex virus-1 and -2 (HSV-1 and -2) patients who suffer from recurrent outbreaks consists of multiple daily doses of the antiviral drugs acyclovir (ACV), penciclovir, or their more orally bioavailable derivatives valacyclovir or famciclovir. Drug troughs caused by missed doses may result in viral replication, which can generate drug-resistant mutants along with clinical sequelae. We developed a molecularly homogeneous mixture of ACV with the bioerodable polymer polycaprolactone. Through scanning electron microscopy, infrared spectroscopy, gel permeation chromatography, 1H NMR, and differential scanning calorimetry, our method of combining drug and polymer, termed Volatile Acid-Solvent Evaporation (VASE), does not compromise the integrity of polymer or drug. Furthermore, VASE creates materials that deliver therapeutic amounts of drug consistently for approximately two months. Devices with high enough drug loads diminish primary infection of HSV-1 in Vero cells to the same level as seen with a single dose of ACV. Our data will lead to further experiments in animal models, demonstrating efficacy in preventing reactivation of these viruses with a single intervention, and with other antiviral drugs amenable to such manipulation. Additionally, this type of treatment would leave no trace after its useful lifetime, as drug is released and polymer matrix is degraded in vivo .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app