Add like
Add dislike
Add to saved papers

Effects of Reduced Effort on Mechanical Output Obtained From Maximum Vertical Jumps.

Motor Control 2018 October 25
The aim of this study was to evaluate the effect of reduced effort on maximum countermovement jumps. Groups of unskilled and skilled jumpers performed countermovement jumps without an arm swing at 100% and 50% effort. The results revealed markedly reduced jump height and work performed at 50% effort, although the maximum force and power output remained virtually unchanged. The observed differences were consistent across individuals with different jumping skills. A possible cause of differences in changes across the tested variables was a reduced countermovement depth associated with the 50% effort jumps. It is known to cause an increase in maximum force and power outputs, but not in jump height. Therefore, the jump height and work performed may be more closely related to our sense of effort when jumping, rather than our maximum force and power output. From a practical perspective, the present findings reiterate the importance of maximizing effort for making valid assessments of muscle mechanical capacities, as tested by maximal vertical jumps and, possibly, other maximum performance tasks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app