Add like
Add dislike
Add to saved papers

Leaf Stable Carbon Isotope Composition Reflects Transpiration Efficiency in Zea mays.

Plant Journal 2018 October 24
The increasing demand for food production and predicted climate change scenarios highlight the need for improvements in crop sustainability. The efficient use of water will become increasingly important for rainfed agricultural crops even in fertile regions that have historically received ample precipitation. Improvements in water-use efficiency in Zea mays have been limited, and warrants a renewed effort aided by molecular breeding approaches. Progress has been constrained by the difficulty of measuring water-use in a field environment. The stable carbon isotope composition (δ13 C) of the leaf has been proposed as an integrated signature of carbon fixation with a link to stomatal conductance. However, additional factors affecting leaf δ13 C exist, and a limited number of studies have explored this trait in Z. mays. Here we present an extensive characterization of leaf δ13 C in Z. mays. Significant variation in leaf δ13 C exists across diverse lines of Z. mays, which we show to be heritable across several environments. Furthermore, we examine temporal and spatial variation in leaf δ13 C to determine the optimum sampling time to maximize the use of leaf δ13 C as a trait. Finally, our results demonstrate the relationship between transpiration and leaf δ13 C in the field and the greenhouse. Decreasing transpiration and soil moisture are associated with decreasing leaf δ13 C. Taken together these results outline a strategy for using leaf δ13 C and reveal its usefulness as a measure of transpiration efficiency under well-watered conditions rather than a predictor of performance under drought. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app