Add like
Add dislike
Add to saved papers

Short-term cortisol exposure alters cardiac hypertrophic and non-hypertrophic signalling in a time-dependent manner in rainbow trout.

Biology Open 2018 November 30
Cardiac disease is a growing concern in farmed animals, and stress has been implicated as a factor for myocardial dysfunction and mortality in commercial fish rearing. We recently showed that the stress hormone cortisol induces pathological cardiac remodelling in rainbow trout. Wild and farmed salmonids are exposed to fluctuations and sometimes prolonged episodes of increased cortisol levels. Thus, studying the timeframe of cortisol-induced cardiac remodelling is necessary to understand its role in the pathogenesis of cardiovascular disease in salmonids. We here establish that 3 weeks of cortisol exposure is sufficient to increase relative ventricular mass (RVM) by 20% in rainbow trout. Moreover, increased RVMs are associated with altered expression of hypertrophic and non-hypertrophic remodelling markers. Further, we characterised the time course of cortisol-induced cardiac remodelling by feeding rainbow trout cortisol-containing feed for 2, 7 and 21 days. We show that the effect of cortisol on expression of hypertrophic and non-hypertrophic remodelling markers is time-dependent and in some cases acute. Our data indicate that short-term stressors and life cycle transitions associated with elevated cortisol levels can potentially influence hypertrophic and non-hypertrophic remodelling of the trout heart.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app