Add like
Add dislike
Add to saved papers

A comparative study of MOx (M = Mn, Co and Cu) modifications over CePO 4 catalysts for selective catalytic reduction of NO with NH 3 .

The MOx (M = Cu, Mn, Co)/CePO4 support was firstly prepared via the hydrothermal and impregnated method. Selective catalytic reduction of NO with NH3 (NH3 -SCR) results showed that the MnOx modifications greatly improved the SCR activities at low temperatures. The NOx conversion of the MnOx /CePO4 catalyst was above 80% even at 180 °C. In-situ DRIFTS results suggest that the SCR reaction is majorly conducted between the absorbed monodentate nitrate and NH3 species (i.e., the Langmuir-Hinshelwood mechanism). MOx (M = Cu, Mn, Co) exists in the formation of nano-size particles obtained by SEM and TEM directly. These nano-size particles can provide active surface adsorbed oxygen and thus improve the NO oxidation ability as indicated by the O2 -TPD and NO oxidation tests. The process of NO oxidation to NO2 plays a key role to produce the absorbed monodentate nitrate as indicated by the In-situ DRIFTS. The support CePO4 acts as the acid sites to form highly active NH4 + species. The synergic effect between the MnOx and CePO4 contributed to the high SCR activity over the MnOx /CePO4 catalyst. Additionally, the MOx/CePO4 catalyst exhibits an excellent water tolerance and N2 selectivity. Consequently, the MnOx /CePO4 catalyst becomes the potential catalyst for the practical process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app