Add like
Add dislike
Add to saved papers

Magnetic Anisotropy Controlled by Distinct Interfacial Lattice Distortions at the La 1- x Sr x CoO 3 /La 2/3 Sr 1/3 MnO 3 Interfaces.

Interface engineering is an important approach leading to multifunctional artificial materials. Although most of the previous works focused on the effects of the rotation/tilting of interfacial oxygen octahedron on perovskite multilayers, here, we report on a new kind of lattice distortion characterized by an off-center shift of the Mn ions within the MnO6 oxygen octahedra at the interfaces of La1- x Sr x CoO3 /La2/3 Sr1/3 MnO3 /La1- x Sr x CoO3 /LaAlO3 trilayers ( x = 0-1/3), which drives the initially perpendicularly aligned magnetic axis of the La2/3 Sr1/3 MnO3 (LSMO) film toward the in-plane direction, though the film is in a strongly compressive state. It is further found that the magnetic anisotropy considerably depends on the content of Sr in La1- x Sr x CoO3 , enhancing as x decreases. The maximal anisotropy constant at 10 K is +2.5 × 106 erg/cm3 for the trilayers with x = 0, whereas it is -1.5 × 105 erg/cm3 for a bare LSMO film on LaAlO3 . On the basis of the analysis of X-ray absorption spectroscopy and the results of density functional theory calculations, we found that the off-center displacement of the Mn ions has caused a strong orbital reconstruction at interfaces, resulting in the anomalous spin orientation against magnetoelastic coupling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app