Add like
Add dislike
Add to saved papers

Energy and environmental performances of hybrid photovoltaic irrigation systems in Mediterranean intensive and super-intensive olive orchards.

Over the last decades, traditional olive production has been converted to intensive and super-intensive cultivation systems, characterized by high plant density and irrigation. Although this conversion improves product quality and quantity, it requires a larger amount of energy input. The new contributions in this paper are, first, an analysis of the energy and environmental performance of two commercial-scale high peak-power hybrid photovoltaic irrigation systems (HPVIS) installed at intensive and super-intensive Mediterranean olive orchards; second, an analysis of PV hybrid solutions, comparing PV hybridization with the electric power grid and with diesel generators; and finally, a comparison of the environmental benefits of HPVIS with conventional power sources. Energy and environmental performances were assessed through energy and carbon payback times (EPBT and CPBT). The results show EPBT of 1.98 and 4.58 years and CPBT of 1.86 and 9.16 years for HPVIS in Morocco and Portugal, respectively. Moreover, the HPVIS were able to achieve low emission rates, corresponding to 48 and 103 g CO2 e per kWh generated. The EPBT and CPBT obtained in this study were directly linked with the irrigation schedules of the olive orchards; therefore, weather conditions and irrigation management may modify the energy and environmental performances of HPVIS. The consumption of grid electricity and diesel fuel, before and after the implementation of HPVIS, was also analyzed. The results obtained show fossil energy savings of 67% for the Moroccan farm and 41% for the Portuguese installation. These savings suggest that the energy produced by HPVIS in olive orchards will avoid the emissions of a large amount of greenhouse gas and the exploitation of natural resources associated with fossil fuel production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app